• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

PMS Instrument Company

  • Home
  • About Us
    • Biography of Henry Dixon
    • Biography of John Joly
    • Biography of Per Scholander
    • History of PMS Instrument – Joe Zaerr
    • History of the Scholander Pressure Chamber
  • Products
    • Model 600
    • Model 600D
    • Model 600-EXP Super Chamber
    • Model 615
    • Model 615D
    • Model 670
    • Model 1000
    • Model 1505D
    • Model 1505D-EXP
    • Model 1515D
    • Pump-Up Chamber
  • Agriculture
    • Using a Pressure Chamber with wine grapes
    • Using a Pressure Chamber with Almond
    • Using a Pressure Chamber with Walnuts
    • Using a Pressure Chamber with Prunes
    • Stress levels, crop tables and information
  • Maintenance
  • Resources
    • References
  • How to Order
  • Contact Us
  • Show Search
Hide Search
You are here: Home / Picture Tutorials, Videos and maintenance information / How does a pressure chamber work?

How does a pressure chamber work?

Warning!Important Safety Information
« Click Here

How does a pressure chamber work? PMS Instruments

In simplest terms, the pressure chamber can be thought of as measuring the “blood pressure” of a plant, except for plants it is water rather than blood, and the water is not pumped by a heart using pressure, but rather pulled with a suction force as water evaporates from the leaves. Water within the plant mainly moves through very small inter-connected cells, collectively called xylem, which are essentially a network of pipes carrying water from the roots to the leaves. The water in the xylem is under tension. As the soil dries or humidity, wind or heat load increases, it becomes increasingly difficult for the roots to keep pace with evaporation from the leaves. This causes the tension to increase. Under these conditions you could say that the plant begins to experience “high blood pressure.”

Since tension is measured, negative values are typically reported. An easy way to remember this is to think of water stress as a “deficit”. The more the stress the more the plant is experiencing a deficit of water. The scientific name given to this deficit is the “water potential” of the plant. The actual physics of how the water moves from the leaf is more complex than just “squeezing” water out of a leaf, or just bringing water back to where it was when the leaf was cut. However, in practice, the only important factor is for the operator to recognize when water just begins to appear at the cut end of the petiole.

Below are a few links to other sites that further explain how a Pressure Chamber Works.

  • The Pressure Chamber
  • Using the Pressure Chamber
  • The Pine and the Pressure Chamber

Primary Sidebar

More Resources:

  • Instruments
    • Instrument Quick-Connect Couplers
    • Filling the Model 610 internal Portable Tank
    • Filling the Model 615, Model 615D or Model 1515D Internal Tank
    • Filling the Portable Tank
    • Sealing a sample in the Compression Gland Cover
    • Setting the Rate Valve
    • What it should look like when it’s all hooked up
  • Making the Measurements – Plant Moisture Stress
    • Interpreting Data
    • Making the Measurement of the Plant Sample
    • Measuring Leaf Water Potential in Wine Grapes
    • Measuring Stem Water Potential (SWP)
    • Measuring Stem Water Potential in Almond Trees
    • Measuring Stem Water Potential in Prune Trees
    • Measuring Stem Water Potential in Walnut Trees
    • PMS – Meaning and Importance
    • Stress levels, crop tables and information
    • Using a Pressure Chamber with Almond
    • Using a Pressure Chamber with Walnuts
    • Using a Pressure Chamber with wine grapes
    • Using a Pressure Chamber with Prunes
    • What kind of plants can be measured?
    • When to make measurements
  • Accessories to Nitrogen Gas Units
    • Installing the Almond Compression Gland Gasket and Insert
    • Installing the Grass Compression Gland
    • Using the Grass Compression Gland
    • Pressure Regulators: Do I need one?
    • Using the Grass Compression Gland with corn
    • Sealing a sample using inserts, gaskets and tools
    • Standard Sealing System

Copyright © 2025 PMS Instrument Company | LOGIN